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Abstract Using multiple sensors often requires the knowledge of static transforma-
tions between those sensors. If these transformations are unknown, hand-eye cali-
bration is used to obtain them. Additionally, sensors are often unsynchronized, thus
requiring time-alignment of measurements. This alignment can further be hindered
by having sensors that fail at providing useful data over a certain time period. We
present an end-to-end calibration framework to solve the hand-eye calibration. Af-
ter an initial time-alignment step, we use the time-aligned pose estimates to perform
the static transformation estimation based on different prefiltering methods, which
are robust to outliers. In a final step, we employ a non-linear optimization to locally
refine the calibration and time-alignment. Successful application of this estimation
framework is demonstrated on multiple robotic systems with different sensor con-
figurations. This framework is released as open source software together with the
datasets.

1 Introduction

The hand-eye calibration problem is among the most important calibration scenar-
ios in robotics. Its name refers to the problem of calibrating the pose of a camera
coordinate system relative to the reference frame of the robot arm’s end effector on
which it is rigidly mounted. Another important instance of the problem is inferring
the relative pose of two sensors, such as cameras, even if their views do not over-
lap. More generally, hand-eye calibration systems aim at finding the transformation
between two reference frames that are rigidly mounted with respect to each other.

Formally, solving the hand-eye calibration problem comes down to solving the
AX = XB equation in which A, B, and X represent rigid body motions. This formu-
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lation, originally proposed in [21], has been subject of an extensive body of research
which focused on finding a solution to this equation. However, practical implemen-
tations of a hand-eye calibration system may present significant additional chal-
lenges. For instance, time-alignment needs to be taken into account when the two
reference frames stem from sensors / actuators running on different systems. This is
particularly true when these systems need to be (re-)calibrated on-line during regular
operation and, therefore, cannot be specifically controlled for calibration.

For practical applications it is of particular interest to be able to solve the afore-
mentioned problems within a single system making it widely applicable to different
practical instances of the hand-eye calibration problem. Unfortunately, the broad
body of research on the hand-eye calibration problem is not adequately matched by
thorough evaluations in different scenarios and freely available software packages.

The goal of this work is to fill this gap by providing an open source toolbox1

for hand-eye calibration that can be easily used within a broad range of applica-
tions and is at the same time easily adaptable to incorporating further algorithms
and calibration procedures. Contributions presented in this paper not only involve
the presentation of the software package but also its applicability to robotic systems.
This is achieved through thorough evaluations on different types of datasets involv-
ing a robotic arm and multiple hand-held devices. Furthermore, we make all our
datasets publicly available in order to simplify future evaluation of hand-eye cali-
bration algorithms. The contributions of this work can be summarized as follows:

• A collection of datasets using different sensors and sensor configurations.
• Thorough validation of the hand-eye calibration system with different filtering

methods on these datasets.
• A software toolbox for hand-eye calibration including time-alignment and han-

dling noisy data.

The remainder of the paper is structured as follows. In the next section, we study
related work. An overview of the methodology implemented in the proposed cali-
bration toolbox is presented in Section 3. The datasets that are used for evaluation
are presented in Section 4 followed by the validation of the proposed method. A
conclusion with an outlook is provided in Section 6.

2 Related Work

The problem of hand-eye calibration has been well studied in late 80’s and 90’s.
Classical approaches to solving AX = XB problem decoupled rotational and trans-
lational parts of the calibration, resulting in simpler but more error-prone solu-
tions [23]. Shiu and Ahmad [21] demonstrated how a hand-eye calibration problem
can be expressed using an angle-axis representation and solved for rotation, then
translation using a least squares fitting. Similar, but a more efficient approach was

1 https://github.com/ethz-asl/hand_eye_calibration

https://github.com/ethz-asl/hand_eye_calibration
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developed by Tsai and Lenz [25] using a closed-form solution. Wang [26] proposed
another formulation using angle-axis representation and conducted an early compar-
ison of the three methods, reporting that the one by Tsai and Lenz [25] performed
the best on average. Formulation of the same problem using quaternions for rota-
tions was introduced by Chou and Kamel [3]. Park and Martin [18] have formed
an alternative closed-form solution using Lie group theory to simplify the problem,
and Fassi and Legnani [6] demonstrated how to solve the calibration problem, in a
least squares manner, first for rotation and then translation in presence of noisy data.

The same AX = XB problem can be solved simultaneously for hand-eye rota-
tion and translation. Horaud and Dornaika [13], in addition to proposing another
closed-form solution using quaternions for the decoupled problem, also proposed an
iterative method for solving the orientation (represented by quaternions) and trans-
lation components simultaneously. They applied a Levenberg-Marquardt technique,
a robust non-linear optimization method, to obtain the solution. Furthermore, they
performed a stability analysis for both of their approaches and the method proposed
by Tsai and Lenz [25], concluding that the non-linear optimization method is the
most robust with respect to measurement errors and noise, and much more accu-
rate than the classical formulation by Tsai and Lenz [25]. Daniilidis [4] proposed
another formulation, based on screw-theory, for the simultaneous hand-eye calibra-
tion. He obtained a singular value decomposition (SVD)-based solution by using a
dual-quaternion representation for both rotations and translations. His work was ex-
tended by Schmidt et al. [20] who also implemented the screw-axis based selection
of movement pairs for increasing numerical stability and random sample consen-
sus (RANSAC)-based elimination of outliers. Another iterative method based on a
parameterization of a stochastic model was introduced by Strobl and Hirzinger [23].
In order to evaluate optimality of different algorithms, they introduced a metric on
the group of the rigid transformations SE(3) and the corresponding error model for
non-linear optimization.

Andreff and Espiau [2] demonstrated robot hand-eye calibration using structure-
from-motion for computing camera motions, up to an unknown scale factor which is
introduced in a linear formulation of the calibration problem. They also showed that
their method is very accurate in rotation, however, for translations, in case of noisy
data, other methods by Daniilidis [4] and Horaud and Dornaika [13] perform better.
A modification to the structure-from-motion approach was presented by Heller et.
al. [12] which addresses the scale ambiguity by formulating the estimation of the
hand-eye displacement as an L∞-norm optimization problem.

In most practical applications, in addition to estimating the hand-eye calibra-
tion, and due to asynchronous clocks from different devices, it is necessary to per-
form temporal alignment of the data. Ackerman et. al. [1] used invariant quantities,
coming from screw theory, between two pairs of measurements to align uniformly
asynchronous data and account for data with gaps. Alignment was based on corre-
lation of the measurement invariants using the Discrete Fourier Transform (DFT),
however, the approach was evaluated only on simulated data. In their motion-based
calibration method, Taylor and Nieto [24] compute the likelihood of a timing offset
based on an angle through which each sensor rotates, taking the associated uncer-
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Fig. 1 The transformations
relevant for the and-eye cal-
ibration. Black are the trans-
formations of the first pose
pair and in grey the second
pose pairs. Solid lines indi-
cate static transformations,
where dashed lines indicate
transformations that change
over time.

tainty into account. Additionally, using a probabilistic framework and based on the
estimated motion of each individual sensor, estimated accuracy of each sensor’s
readings and appearance information, they compute the final calibration. Rehder
et. al. [19] have demonstrated a general framework, using a continuous-time state
representation, for joint calibration of temporal offsets and spatial transformations
between multiple sensors. In this approach, the time offset is estimated using ba-
sis functions which allows them to treat the problem within the rigorous theoretical
framework of maximum likelihood estimation. An alternative approach, formulating
the temporal calibration as a registration task, using an iterative closest point (ICP)
algorithm, was introduced by Kelly and Sukhatme [14]. TICSync, an open source
library implementing software for time-alignment was developed by Harrison and
Newman [11]. They used a two-way timing mechanism to estimate the offset and re-
alize unified and precise timing across distributed networked systems. Since sensors
rarely have support for this two-way mechanism, another open-source framework,
TriggerSync by English et. al. [5] was developed based on TICSync library. This
framework is used for synchronizing multiple triggered sensors with respect to the
local clock.

Our approach is based on the method by Daniilidis [4] with a similar outlier
rejection and motion selection as in Schmidt et al. [20]. However, our method incor-
porates several additional outlier rejection techniques, of which we prove that they
can significantly improve the performance of the original algorithm. Furthermore,
we perform initial time-alignment based on correlation between the angular veloc-
ities. As a final refinement step we perform non-linear maximum likelihood batch
estimation with a continuous-time state representation as described in [9]. The over-
all approach for the this step is very similar to the one proposed in [19].

3 Method

In the presented work, we allow inputs to the hand-eye calibration to be pose es-
timations or camera images from which we estimate poses relative to a visual tar-
get. Therefore, we split this section into the subsections for target extraction, time-
alignment, hand-eye calibration, and the refinement step. The pose estimations from
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camera images are described in Section 3.1. We use interpolated angular velocity
norms for the time-alignment, which we describe in Section 3.2. With two timely
aligned sets of poses, we perform the hand-eye calibration with outlier rejection, as
described in Section 3.3. Using the results from time-alignment and (global) hand-
eye calibration as initial guesses, we additionally perform a final local refinement
step using non-linear optimization to find a local, joint spatiotemporal maximum
likelihood solution. This last step we describe in Section 3.3.2.

3.1 Target Extractor

In order to use the time-alignment and hand-eye calibration methods presented in
the following sections, two sets of poses are required. There are several well known
methods to estimate poses from camera images, based on feature matching, optical
flow, etc. To avoid drift in the measurements it is beneficial to find features of an
object that is known to be stationary in the environment. Camera pose estimates
from matched features suffer from an unknown scale, in order to solve this issue,
one can look for pairs of features with known metric distances, or use additional
sensors with metric information, such as inertial measurement units, range sensors,
radar, motor, or wheel encoders.

In our approach, we use visual AprilTag targets [17] of known size. We assume
that the intrinsic camera calibrations are known2. When the target is visible in the
camera frame, corner features are extracted. Additionally, by detecting AprilTags on
the calibration target, the detected corners can produce one to one matches among
different images. The successful observations of the target are appended to a vector.
For all these observations we check, using a RANSAC based Perspective-n-Point
method, if they agree with the camera model from the intrinsic calibration and ex-
tract a pose estimation of the camera (or eye) E, TWE i, in the target (or world) frame
W . If the corresponding inlier ratio λi is greater then an inlier threshold λth we keep
the pose estimate TWE i along with its timestamp tE i for the next steps.

3.2 Time Alignment

In order to compare poses originating from different sensors one can rarely rely on
hardware-synchronized device clocks as the sensors might not be communicating at
all, e.g. when calibrating a camera tracked by an external motion capture system.
That is why the synchronization of the two sensor clocks, or to be more precise the
two sets of timestamped sensor data is the first crucial step for hand-eye calibration.
A popular method of computing the time-alignment for signals with constant time-
offsets is to correlate the angular velocity norms of both pose signals. To that end,

2 For intrinsic camera calibration, the Kalibr framework (https://github.com/
ethz-asl/kalibr) was used and we refer the reader to [7, 8, 16] for more details.

https://github.com/ethz-asl/kalibr
https://github.com/ethz-asl/kalibr
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Fig. 2: Time-alignment result: The plot provides an intuitive understanding of the
direction and magnitude as well as the quality of the alignment.

we first resample the poses at the lower frequency of the two pose signals and then
compute the angular velocity norm based on both sets of quaternions. In order to
make the time-alignment more robust to outliers or missing data, e.g. caused by a
signal drop, we first cap the signal at the 99th percentile of the magnitude and then
apply a low-pass kernel. The time offset can then be computed from the maximum
value of the convoluted signal. In order to provide feedback about the quality of the
time-alignment, the user is presented a comprehensible graphical representation of
the alignment results (see Figure 2).

3.3 Hand-Eye Calibration

To perform a hand-eye calibration, at least two pose pairs are required. As depicted
in Figure 1, we can then solve the hand-eye calibration equation:

TBH1THET−1
WE1

= TBH2THET−1
WE2

, (1)

where B is the body frame, H the hand frame, W and E, the world and eye
frame introduced earlier. This can be reformulated using the transformation be-
tween consecutive poses of the two pose sources, using TH1H2 = T−1

BH2
TBH1 , and

TE1E2 = T−1
WE2

TWE1 , respectively, into TH1H2THE = THETE1E2 .
In the context of this paper, the method presented in [4] was used for the hand-eye

calibration. Therefore, we are solving the hand-eye calibration using dual quater-
nions q̌H1H2 = q̌HE q̌E1E2 q̌−1

HE . However, this method is sensitive to outlier and noise
as it employs an SVD to solve the hand-eye calibration problem.

3.3.1 Filtering

To improve the robustness and the accuracy of the calibration results, we imple-
mented and evaluated several outlier rejection and filtering methods. First, in order
to reduce the amount of data points we need to process, we employ the following
filtering technique:
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Pose Filtering (PF) Since usual datasets can contain very large number of pose
pairs for calibration, in the first step of our approach, we apply a filtering method
based on [20]. This method first computes the screw motion axis of each dual quater-
nion representing one transformation. The dot products for each combination of the
screw-axis from the hand data, as well as the dot products of each combination of
the eye data are computed. If one of these dot products is higher than a threshold
then the respective hand-eye pair gets filtered out. The main idea for this filtering
is that if the dot product is high, it means that the screw-axis for these transforms
are almost parallel, meaning that they contain similar information and that we can
filter one of them out since it is not so informative. Using this filtering method we
can greatly reduce the number of pose pairs that will be passed to the calibration
algorithm, thus, improving the efficiency, however, slightly reducing the accuracy.

RANSAC “Classic” (RC) In a first, step we reduce the number of dual quater-
nion pairs using the filtering method described above. RANSAC (see Algorithm 1)
draws n (n≥ 2) time-aligned quaternion pairs at random, the sample. As described
in [4], the scalar parts of two dual quaternions representing the same screw need to
be equal in order for this method to succeed. We made use of this condition to first
reject any samples that violate it early on. RANSAC then proceeds by identifying
inliers that agree with the hand-eye calibration. Therefore, the standard way is to
first estimate the calibration based on the drawn samples. This resulting calibration
is then used to transform the quaternion pairs into the same base frame. We then
compare their position and orientation errors which allows us to apply thresholds
λt,min (position) and λr,min (orientation) to identify inliers and outliers. The calibra-
tion is refined by repeating the hand-eye calibration method on the inliers found in
the previous step. We repeat the evaluation step we used to identify the inliers and
compute the root mean square error (RMSE) of position and orientation across all
the quaternion pairs. Finally, we keep the calibration that exhibits the lowest RMSE.

RANSAC Scalar (RS) based inlier check Furthermore, we propose and com-
pare a second variant of this algorithm that employs a different, more efficient way
of identifying inliers. We reduce the sample size to 1 and omit the sample-based
hand-eye calibration computation and its expensive evaluation, and directly select
the inliers based on the compatibility of the quaternion pairs’ scalar values. The
algorithm then continues like the previous RANSAC variant by computing the cali-
bration on the inliers and evaluating it based on the RMSE of position and rotation
error of the aligned quaternion pairs.

We compare our proposed improvements to the following two algorithms.

• Baseline (B): Finds the first subset of quaternion pairs that fulfills the scalar
value equality condition and compute the hand-eye-calibration.

• Exhaustive search (EC and ES): Is algorithmically identical to the proposed
RANSAC algorithms, except that all possible sample combinations are explored.
In order to keep the runtime within reasonable limits we employ this method only
on the filtered set of quaternion pairs.
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Algorithm 1: RANSAC based input pose pair selection for Eq. 1.
Data: A pair of vectors with time-aligned dual quaternions: Pa,b = [a,b]
a = [q̌a,1 · · · q̌a,k ]

T , b = [q̌b,1 · · · q̌b,k ]
T , RMSEbest = ∞

Result: Static transform dual quaternion q̌a,b and corresponding RMSE
Function HandEyeCalibrationRANSAC(Pa,b)

Fa,b← FilterPairs(Pa,b) // PF
while not reached probability of at least one inlier sample do

Sa,b← SamplePairs(Fa,b)
if not AllScalarPartsEqual(Sa,b) then next ;
if RC or EC then

q̌′a,b← ComputeHandEyeCalibration(Sa,b)
Ia,b← GetInliersBasedOnPoseError(Fa,b, q̌′a,b, λt,min, λr,min)

else
// RS or ES
Ia,b← GetInliersBasedOnScalarPartsEquality(Sa,b,Fa,b)

end
if |Ia,b|< required number of inliers then next ;
q̌′a,b← ComputeHandEyeCalibration(Ia,b)
(RMSE,Ia,b)← EvaluatePairs(Pa,b, q̌′a,b)
if RMSE < RMSEbest then

RMSEbest ← RMSE
q̌a,b← q̌′a,b

end
end
return (RMSEbest , q̌a,b)

3.3.2 Refinement Step

In Sections 3.2 and 3.3 we address the global extrinsic spatiotemporal hand-eye
calibration problem. However, the expected accuracy is limited mostly due to the
fact that the assumed pose-trajectories are estimated individually and kept fix when
aligning them to find the hand-eye calibration. A joint maximum likelihood op-
timization of calibration and trajectory given the measurements allows higher ac-
curacy. This optimization is hard to solve as global problem but using the results
from our global approach as an initial guess a local likelihood maximization can
improve the accuracy of the calibration. We perform this joint batch estimation step
with a continuous-time representation for the trajectory, as in [9, 19], and overall
very similar to what is described in [19]. Except for that we use Lie group val-
ued B-splines, [22], to represent SO(3)-trajectories instead of vector space valued
B-splines in an unconstrained parameter space of SO(3) [9, 19] 3. To solve the non-
linear optimization we use an extension of Levenberg-Marquardt to Lie groups (as
documented e.g. in [22]).

More specifically, we model the joint problem with one trajectory for the moving
hand frame, H, TBH(t) =: X(t). The eye-frame, E, is assumed to be rigidly con-
nected to the hand frame by the spatial calibration, THE , as depicted in Figure 1. The

3 Traditional B-splines in parameter space are not equivariant with respect to transformations of
the world and body frame. Therefore, for a given trajectory the local expressiveness of such a
representation typically depends on where the trajectory is in that segment. Furthermore, they can
go through ambiguous or unstable regions of the parameter space. The Lie-group valued B-splines
we use are bi-equivariant [22] and are neither locally ambiguous nor unstable.



Time-Offset Estimation and Hand-Eye Calibration 9

pose measurement timestamps for H and E are assumed to be connected through a
fixed time-offset ∆ t. Their errors we assume to be generated from isotropic multi-
variate Cauchy distributions4 with three degrees of freedom independently for both
translation (with zero mean) and rotation (with identity mean)5 with respect to B
and W -frame respectively. Or, if the eye is only emitting relative pose estimates (as,
e.g., in visual inertial odometry), the same type of error source is assumed but with
respect to the pose of the last measurement event. This yields the following negative
log likelihood function, l, which we minimize:

l
(

TWE ,THE ,∆ t,X
∣∣∣(TWE i, tE i)

k
i=1 ,(TBH i, tH i)

l
i=1

)
=

kE

∑
i=2

ρ(‖dE (TWE i−1,TWE i,TWE(tE i−1),TWE(tE i))‖2
ΣE
)

+
kH

∑
i=2

ρ(‖dH (TBH i−1,TBH i,TBH(tH i−1),TBH(tH i))‖2
ΣH

), (2)

where TWE(t) := TWBTBH(t − ∆ t)THE , TBH(t) = X(t), ρ(s) = log(1 + s) the
Cauchy-loss, and dE and dH are either relative, (A′,A,B′,B) 7→ d(A′−1A,B′−1B), or
absolute (A′,A,B′,B) 7→ d(A,B) 6. As displacement vector d(A,B) ∈ R6 on SE(3)
we use coordinates of (logSO(3)(R),u) with respect to a fixed positive orthonormal
basis, where u is a translation and R a proper rotation such that (uniquely) u◦R :=
A−1B. Please note that l becomes independent of TWE iff dE is relative because then
it cancels out in B′−1B.

4 Datasets

In the scope of this work, we evaluated our calibration framework on three differ-
ent systems. Firstly, an RGB-D sensor with a visual target in an external tracking
system. Secondly, a robot arm with an RGB-D sensor mounted close to the end ef-
fector. And, lastly, we have mounted three Tango tablets on a rigid profile, and used
it for recording two datasets with different motions.

RGB-D-Sensor in external motion caption system: In the first experiments, we
recorded color images from a PrimeSense RGB-D sensor, which was tracked using
a Vicon tracking system. We placed a visual target in front of the camera to be able
to use the camera pose estimation described in Section 3.1.

Robot Arm with RGB-D-Sensor: We recorded two datasets with a UR-10 robot
arm equipped with a RealSense SR300 RGB-D sensor, mounted rigidly to a sensor

4 This is equivalent to least squares with a Cauchy loss function.
5 Approximated with zero-mean Cauchy distributions in the Lie algebra projected to SO(3) using
the exponential map.
6 For absolute dE ,dH the corresponding first measurements, i = 1, are assumed to be dummy
variables while the real measurements start with i = 2.
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mount close to the end effector. The first dataset is simulated and recorded in the
Gazebo robotic simulator [15]. In this dataset, we can extract the ground truth hand-
eye transformation from the setup of the robot model. The second dataset is a similar
setup, but recorded on a real robot. In both, the simulation and the real world exper-
iment, there is an AprilTag target placed on the robot base to estimate the camera
motion.

Rig with Three Tango Tablets: The next datasets contain pose estimations from
three Google Tango tablets [10] that are rigidly mounted on an aluminum profile.
The datasets are recorded in an indoor environment. In order to improve the ac-
curacy of the Tango pose estimation, we used the Tango framework to find loop
closures and create optimized localization maps based on the individual trajectories
and then exported the self-localized pose estimates of the Tango tablet.

5 Results

Evaluating hand-eye calibrations is inherently difficult, as ground truth values are
not available for real systems. In order to evaluate the initial hand-eye calibration re-
sults, we use the same evaluation method also employed for the sample evaluation in
the RANSAC algorithm, i.e., we transform the pose pairs into a common frame and
compute the RMSE of the position and orientation. For the datasets with more than
one sensor pair, we further evaluate the accumulation of position / orientation error
that occurs when all sensor pair calibrations are combined to form a loop, hence
ideally resulting in the identity transform. In order to evaluate the different com-
ponents of the proposed system we compare the PF RC, NF RC, PF RS, NF RS,
PF B, NF B, PF EC, PF ES variants (see Section 3.3) on the datasets described in
Section 4. As a refinement step, we apply the refinement described in Section 3.3.2
to the individual initial guesses.

Furthermore, we compare the runtimes of the different algorithms. All non-
deterministic algorithms (i.e. RC and RS) are run 20 times and the results are ac-
cumulated using box-plots. For the Tango datasets, we additionally accumulated the
measurements of all 3 hand-eye calibration pairs.

5.1 Time Alignment

In order to demonstrate the importance of filtering the angular velocity norm prior
to the correlation used for time-alignment, we show how the RMSE results of the
ES algorithm improve, see Table 1 and Figure 3. For the PrimeSense and the robot
arm dataset we see an improvement of the calibration result. This corresponds with
the observation, that there is more noise on the orientation for those datasets. If the
time offset, which is a multiple of the discrete time steps of the timestamped poses,
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Fig. 3: Time-alignment with (top) and without (bottom) capping and low-pass filter-
ing.
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Fig. 4: The timings of the differently filtered algorithms on all datasets.

is the same with and without filtering, the results are identical, as observed for the
datasets: robot arm sim and Tango triplet.

RMSE
(position/orientation) PrimeSense Tango triplets

short
robot arm

real
robot arm

sim
filtering (0.0213/0.0213) (0.0364/0.6389) (0.0118/0.6619) (0.0034/0.2677)

no filtering (0.0227/1.8399) (0.0364/0.6389) (0.0120/0.8972) (0.0034/0.2677)

Table 1: RMSE (position [m] / orientation [deg]) results for the ES algorithm with
and without angular velocity norm filtering.

5.2 Hand-Eye Calibration

We show evaluations of the runtimes, in Figure 4, and of the RMSE of position and
orientation for every dataset and algorithm in Figure 5. The two different RANSAC
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based algorithms (RS and RC) both outperform the B in terms of calibration quality,
which is to be expected as the random sampling has a higher chance of finding
inliers. Furthermore, both algorithms result in a calibration quality that is very close
to the ES and EC algorithms, which naturally represent the upper bound without
using the refinement step. The gap in calibration quality of the RANSAC based
algorithms comes at the cost of runtime, i.e. RS and RC are significantly slower than
the B algorithm. While intended as a baseline algorithm to provide an upper bound
for the calibration quality of RS, the ES algorithm proves to be efficient and therefore
a valid candidate. This is due to the fact, that it only requires a single sample and,
therefore, the number of combinations to explore is only the number of input poses,
which has been significantly reduced by the selection of informative pose pairs.
That is why it is only slightly slower than the RANSAC based algorithms. The
EC algorithm on the other hand uses a sample size of n (n >= 3) and, hence, has
to explore a far greater number of combinations, which is reflected in the runtime
plot. Surprisingly, the prefiltering of the poses generally had a negligible effect on
both calibration quality and runtime, with the exception of the above mentioned
exhaustive search, which would not have been feasible without it.

Fig. 5: Evaluation of the different filtering methods on the different datasets.

We plot the circular calibration error of the three sensors in the Tango datasets,
see Figure 6. After the refinement step we get a mean circular position and orienta-
tion error of 4.02 mm and 0.091◦ for the Tango 1 dataset, and 7.19 mm and 0.139◦

for the Tango 2 dataset, which is a significant improvement over the initial calibra-
tion.
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Fig. 6: The circular error of the individual methods and the combined results after
applying the refinement step to the other methods, denoted with (O).

6 Conclusion

In this paper we presented a hand-eye calibration system that can easily be used out
of the box in a variety of scenarios and environments. In order to substantiate that
claim, our system is thoroughly evaluated on different datasets stemming from mul-
tiple types of platforms. Taking a holistic view on the hand-eye calibration problem,
we consider aspects such as time offset estimation as well as detection and rejection
of outliers. All the datasets were made publicly available together with the entire
software toolbox, which was designed in a modular way to ensure extendability.
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